ABHINAV AGRAWAL

abhiagwl@github.io | aagrawal@cs.umass.edu | +91 7755048131 +1 413-768-2256
Probabilistic Machine Learning | Approximate Inference | Generative Modeling

EDUCATION

University of Massachusetts Amherst MS - Ph.D.	Computer Science	2018 - Present
Indian Institute of Technology Kanpur Bachelor of Technology	Electrical Engineering	2014 - 18

PUBLICATIONS

[1] Abhinav Agrawal, Justin Domke. Amortized Variational Inference for Hierarchical Distributions. In Proceedings of 35th Annual Conference on Neural Information Processing Systems, NeurIPS, 2021.

Paper 🖹

[2] Abhinav Agrawal, Daniel Sheldon, Justin Domke. Advances in Black-Box VI: normalizing flows, importance weighting, and optimization. In Proceedings of 34th Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.

Paper 🖹 | Package </> | Slides 🖻 | Poster 🗳

[3] Edmond Cunningham, Renos Zabounidis, **Abhinav Agrawal**, Ina Fiterau, Daniel Sheldon. Normalizing Flows Across Dimensions. In Second workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, ICML, 2020.

Paper 🖹 | Slides 🖻

RESEARCH EXPERIENCE

GRADUATE RESEARCH ASSISTANT Advisor: Prof. Justin Domke, University of Massachusetts Amherst Mav'20 - Present • Aim: To scale variational inference to large hierarchical models • Developed a scalable inference approach that is as accurate as full-rank Gaussians on large hierarchical models **GRADUATE RESEARCH ASSISTANT** Advisor: Prof. Justin Domke, University of Massachusetts Amherst May'19 - Jan'20 · Aim: To develop a robust black-box variational inference scheme • Curated an approach that achieves state-of-the-art inference with minimal user-intervention • Developed an open-source library-vistan-to allow for easy access to proposed approaches Paper 🖹 | Package </> **GRADUATE RESEARCH ASSISTANT** Advisor: Prof. Justin Domke, University of Massachusetts Amherst Jul'18 - Jan'19 • Aim: To develop a hierarchical graphical model to infer time evolving user preferences • Answered critical data-requirements-queries using inferred user-utilities from the developed model Poster 🛃 UNDERGRADUATE RESEARCH ASSISTANT Advisor: Prof. Vinay P. Namboodiri, IIT Kanpur Dec'17 - May'18 • Aim: To leverage generative models for learning transferable representations across two domains • Developed a novel architecture to learn task-independent transferable representations Report 🖹 | Slides 🖻 UNDERGRADUATE INTERN Advisor: Prof. Latifur Khan and Prof. Vincent Ng, UT Dallas May'17 - Aug'17 • Aim: To develop a classification/annotation pipeline for text corpora with class imbalance • Captured semantics with an improved annotation pipeline and bettered classification using data-augmentation Slides 🖻

INDUSTRY EXPERIENCE

APPLIED SCIENTIST

Amazon, Personalization, Repeat Purchase Team Interned with the repeat purchase team to improve "Buy-it-again" recommendations for Amazon retail

REVIEWER

- Neural Information Processing Systems, NeurIPS (2019*, 2020, 2021)
 International Conference on Machine Learning, ICML, (2020, 2021)
- International Conference on Learning Representations, ICLR, 2021

* among top 50% reviewers

RELEVANT PROJECTWORK

HUMAN PART SEGMENTATION THROUGH WEAK SUPERVISION Instructor: Prof. Vinay P. Namboodiri, CSE, IIT Kanpur • Aim: To leverage human pose annotation as weak supervision for body-part segmentation	Aug'17 -	Dec'17
• Developed an end-to-end fully convolutional model to jointly estimate pose-points and predict p	art segmei Report 🖹	
IMPROVING INFERENCE IN VARIATIONAL AUTOENCODERS Instructor: Prof. Piyush Rai, CSE, IIT Kanpur	Aug'17 -	Dec'17
 Aim: To introduce more flexible and efficient proposal distributions for VAEs Augmented the standard VAE architecture with real non volume preserving(rNVP) coupling laye 	rs Report 🖹	Slides 🗟
	Keport 🗐	Shues P
SELECTIVE BLUR USING EXTREME POINT ANNOTATION Instructor: Prof. Tanaya Guha, EE, IIT Kanpur	Aug'17 -	Dec'17
• Aim: To develop a motion blur application for natural images, requiring minimal user annotatio		
• Extended boundary detection in an existing approach with adaptive Gaussian weighted edge ma	ps	
• Extended boundary detection in an existing approach with adaptive Gaussian weighted edge ma	•	Report 🖹
• Extended boundary detection in an existing approach with adaptive Gaussian weighted edge ma	•	Report 🖹
OTHER EXPERIENCE		
OTHER EXPERIENCE	•	
OTHER EXPERIENCE TEAM MEMBER PhD Applicant Support Program, University of Massachusetts Amherst Helped conduct the support program for PhD applicants from under-represented backgrounds. TEACHING ASSISTANT	Nov'20 - Pi	resent
OTHER EXPERIENCE TEAM MEMBER PhD Applicant Support Program, University of Massachusetts Amherst Helped conduct the support program for PhD applicants from under-represented backgrounds.	Nov'20 - Pi Spring'19, '	resent
OTHER EXPERIENCE TEAM MEMBER PhD Applicant Support Program, University of Massachusetts Amherst Helped conduct the support program for PhD applicants from under-represented backgrounds. TEACHING ASSISTANT Probabilistic Graphical Models, University of Massachusetts Amherst	Nov'20 - Pi Spring'19, '	resent '20, '21

PROGRAMMING SKILLS

Jax, Numpyro, Pandas, Jupyter Notebooks, Plotnine, PyTorch, TensorFlow, R, GGPlot, Git, Dockers, VSCode

SCHOLARLY ACHIEVEMENTS

- Received Academic Excellence Award by IIT Kanpur for the year 2014-15, 2015-16, & 2016-17 2017
- Secured **Overall Winner** in Google Devfest for Course Recommendation web-app Received **Best** Overall Project for 2D shape replicator prototype . 2016
- 2015
- Secured **99.86** percentile in JEE Mains 2014 from amongst 1.4 million candidates Awarded **Gold Medal** by SRDAV PUBLIC SCHOOL for 7 years of consecutive excellence 2014
- 2014

COURSEWORK

MATHEMATICS & MACHINE LEARNING	Probabilistic Machine Learning Reinforcement Learning Advanced Algorithms Convex Optimization	Natural Language Processing Linear Algebra and ODE Real Analysis Statistics I & II
VISION & IMAGE PROCESSING	Topics in Computer Vision Visual Recognition Signals, Systems and Networks	Principles of Communication Digital Image Processing Representation of Images